Doubloons and q-secant numbers

نویسندگان

  • Dominique Foata
  • Guo-Niu Han
چکیده

Based on the evaluation at t = −1 of the generating polynomial for the hyperoctahedral group by the number of descents, an observation recently made by Hirzebruch, a new q-secant number is derived by working with the Chow-Gessel q-polynomial involving the flag major index. Using the doubloon combinatorial model we show that this new q-secant number is a polynomial with positive integral coefficients, a property apparently hard to prove by analytical methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Author manuscript, published in "Quarterly Journal of Mathematics (2009) 17 pages" Doubloons and new q-tangent numbers

We introduce new q-tangent numbers based on the Carlitz q-analog of the Eulerian polynomial and the so-called doubloon combinatorial set-up. Those new q-tangent numbers are polynomials with positive integral coefficients. They are divisible by products of binomials of the form 1+ q, the quotients being q-analogs of the reduced tangent numbers having an explicit combinatorial interpretation.

متن کامل

THE q-TANGENT AND q-SECANT NUMBERS VIA BASIC EULERIAN POLYNOMIALS

The classical identity that relates Eulerian polynomials to tangent numbers together with the parallel result dealing with secant numbers is given a q-extension, both analytically and combinatorially. The analytic proof is based on a recent result by Shareshian and Wachs and the combinatorial one on the geometry of alternating permutations.

متن کامل

COMBINATORICS OF GEOMETRICALLY DISTRIBUTED RANDOM VARIABLES: NEW q-TANGENT AND q-SECANT NUMBERS

Up-down permutations are counted by tangent (respectively, secant) numbers. Considering words instead, where the letters are produced by independent geometric distributions, there are several ways of introducing this concept; in the limit they all coincide with the classical version. In this way, we get some new q-tangent and q-secant functions. Some of them also have nice continued fraction ex...

متن کامل

The doubloon polynomial triangle

The doubloon polynomials are generating functions for a class of combinatorial objects called normalized doubloons by the compressed major index. They provide a refinement of the q-tangent numbers and also involve two major specializations: the Poupard triangle and the Catalan triangle.

متن کامل

The (t,q)-Analogs of Secant and Tangent Numbers

To Doron Zeilberger, with our warmest regards, on the occasion of his sixtieth birthday. Abstract. The secant and tangent numbers are given (t, q)-analogs with an explicit com-binatorial interpretation. This extends, both analytically and combinatorially, the classical evaluations of the Eulerian and Roselle polynomials at t = −1.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010